389 research outputs found

    Potential Harmonics Expansion Method for Trapped Interacting Bosons : Inclusion of Two-Body Correlation

    Full text link
    We study a system of AA identical interacting bosons trapped by an external field by solving ab initio the many-body Schroedinger equation. A complete solution by using, for example, the traditional hyperspherical harmonics (HH) basis develops serious problems due to the large degeneracy of HH basis, symmetrization of the wave function, calculation of the matrix elements, etc. for large AA. Instead of the HH basis, here we use the "potential harmonics" (PH) basis, which is a subset of HH basis. We assume that the contribution to the orbital and grand orbital [in 3(A1)3(A-1)-dimensional space of the reduced motion] quantum numbers comes only from the interacting pair. This implies inclusion of two-body correlations only and disregard of all higher-body correlations. Such an assumption is ideally suited for the Bose-Einstein condensate (BEC), which is extremely dilute. Unlike the (3A4)(3A-4) hyperspherical variables in HH basis, the PH basis involves only three {\it{active}} variables. It drastically reduces the number of coupled equations and calculation of the potential matrix becomes tremendously simplified, as it involves integrals over only three variables for any AA. One can easily incorporate realistic atom-atom interactions in a straight forward manner. We study the ground and excited state properties of the condensate for both attractive and repulsive interactions for various particle number.Comment: 36 pages, 7 included figures, plain late

    The parity-violating asymmetry in the 3He(n,p)3H reaction

    Full text link
    The longitudinal asymmetry induced by parity-violating (PV) components in the nucleon-nucleon potential is studied in the charge-exchange reaction 3He(n,p)3H at vanishing incident neutron energies. An expression for the PV observable is derived in terms of T-matrix elements for transitions from the {2S+1}L_J=1S_0 and 3S_1 states in the incoming n-3He channel to states with J=0 and 1 in the outgoing p-3H channel. The T-matrix elements involving PV transitions are obtained in first-order perturbation theory in the hadronic weak-interaction potential, while those connecting states of the same parity are derived from solutions of the strong-interaction Hamiltonian with the hyperspherical-harmonics method. The coupled-channel nature of the scattering problem is fully accounted for. Results are obtained corresponding to realistic or chiral two- and three-nucleon strong-interaction potentials in combination with either the DDH or pionless EFT model for the weak-interaction potential. The asymmetries, predicted with PV pion and vector-meson coupling constants corresponding (essentially) to the DDH "best values" set, range from -9.44 to -2.48 in units of 10^{-8}, depending on the input strong-interaction Hamiltonian. This large model dependence is a consequence of cancellations between long-range (pion) and short-range (vector-meson) contributions, and is of course sensitive to the assumed values for the PV coupling constants.Comment: 19 pages, 15 tables, revtex

    Condenser-free contrast methods for transmitted-light microscopy

    Get PDF
    Phase contrast microscopy allows the study of highly transparent yet detail-rich specimens by producing intensity contrast from phase objects within the sample. Presented here is a generalized phase contrast illumination schema in which condenser optics are entirely abrogated, yielding a condenser- free yet highly effective method of obtaining phase contrast in transmitted-light microscopy. A ring of light emitting diodes (LEDs) is positioned within the light-path such that observation of the objective back focal plane places the il- luminating ring in appropriate conjunction with the phase ring. It is demonstrated that true Zernike phase contrast is obtained, whose geometry can be flexibly manipulated to provide an arbitrary working distance between illuminator and sample. Condenser-free phase contrast is demonstrated across a range of magnifications (4–100×), numerical apertures (0.13–1.65NA) and conventional phase positions. Also demonstrated is condenser-free darkfield microscopy as well as combinatorial contrast including Rheinberg illumination and simultaneous, colour-contrasted, brightfield, darkfield and Zernike phase contrast. By providing enhanced and arbitrary working space above the preparation, a range of concurrent imaging and electrophysiological techniques will be technically facilitated. Condenser-free phase contrast is demonstrated in conjunction with scanning ion conductance microscopy (SICM), using a notched ring to admit the scanned probe. The compact, versatile LED illumination schema will further lend itself to novel next-generation transmitted-light microscopy designs. The condenser-free illumination method, using rings of independent or radially-scanned emitters, may be exploited in future in other electromagnetic wavebands, including X-rays or the infrared

    Bandwidth enhancement for parametric amplifiers operated in chirped multi-beam mode

    Full text link
    In this paper we discuss the bandwidth enhancement that can be achieved in multi-Joule optical parametric chirped pulse amplification (OPCPA) systems exploiting the tunability of parametric amplification. In particular, we consider a pair of single pass amplifiers based on potassium dideuterium phosphate (DKDP), pumped by the second harmonic of Nd:glass and tuned to amplify adjacent regions of the signal spectrum. We demonstrate that a bandwidth enhancement up to 50% is possible in two configurations; in the first case, one of the two amplifiers is operated near its non-collinear broadband limit; to allow for effective recombination and recompression of the outgoing signals this configuration requires filtering and phase manipulation of the spectral tail of the amplified pulses. In the second case, effective recombination can be achieved simply by spectral filtering: in this configuration, the optimization of the parameters of the amplifiers (pulse, crystal orientation and crystal length) does not follow the recipes of non-collinear OPCPA.Comment: 11 pages, 5 figures. To appear in Opt.Com

    A comparative evaluation of interest point detectors and local descriptors for visual SLAM

    Get PDF
    Abstract In this paper we compare the behavior of different interest points detectors and descriptors under the conditions needed to be used as landmarks in vision-based simultaneous localization and mapping (SLAM). We evaluate the repeatability of the detectors, as well as the invariance and distinctiveness of the descriptors, under different perceptual conditions using sequences of images representing planar objects as well as 3D scenes. We believe that this information will be useful when selecting an appropriat

    Proton-3^{3}He elastic scattering at low energies

    Get PDF
    We present new accurate measurements of the differential cross section σ(θ)\sigma(\theta) and the proton analyzing power AyA_{y} for proton-3^{3}He elastic scattering at various energies. A supersonic gas jet target has been employed to obtain these low energy cross section measurements. The σ(θ)\sigma(\theta) distributions have been measured at EpE_{p} = 0.99, 1.59, 2.24, 3.11, and 4.02 MeV. Full angular distributions of AyA_{y} have been measured at EpE_{p} = 1.60, 2.25, 3.13, and 4.05 MeV. This set of high-precision data is compared to four-body variational calculations employing realistic nucleon-nucleon (NN) and three-nucleon (3N) interactions. For the unpolarized cross section the agreement between the theoretical calculation and data is good when a 3N3N potential is used. The comparison between the calculated and measured proton analyzing powers reveals discrepancies of approximately 50% at the maximum of each distribution. This is analogous to the existing ``AyA_{y} Puzzle'' known for the past 20 years in nucleon-deuteron elastic scattering.Comment: 22 pages, 9 figures, to be published in Physical Review C, corrected reference 4

    Experimental verification of the Heisenberg uncertainty principle for hot fullerene molecules

    Get PDF
    The Heisenberg uncertainty principle for material objects is an essential corner stone of quantum mechanics and clearly visualizes the wave nature of matter. Here we report a demonstration of the Heisenberg uncertainty principle for the most massive, complex and hottest single object so far, the fullerene molecule C70 at a temperature of 900 K. We find a good quantitative agreement with the theoretical expectation: dx * dp = h, where dx is the width of the restricting slit, dp is the momentum transfer required to deflect the fullerene to the first interference minimum and h is Planck's quantum of action.Comment: 4 pages, 4 figure

    Calculation of the Alpha--Particle Ground State within the Hyperspherical Harmonic Basis

    Get PDF
    The problem of calculating the four--nucleon bound state properties for the case of realistic two- and three-body nuclear potentials is studied using the hyperspherical harmonic (HH) approach. A careful analysis of the convergence of different classes of HH functions has been performed. A restricted basis is chosen to allow for accurate estimates of the binding energy and other properties of the 4He ground state. Results for various modern two-nucleon and two- plus three-nucleon interactions are presented. The 4He asymptotic normalization constants for separation in 2+2 and 1+3 clusters are also computed.Comment: 29 pages, 4 figures, 11 tables, revtex

    Space-Time Approach to Scattering from Many Body Systems

    Get PDF
    We present scattering from many body systems in a new light. In place of the usual van Hove treatment, (applicable to a wide range of scattering processes using both photons and massive particles) based on plane waves, we calculate the scattering amplitude as a space-time integral over the scattering sample for an incident wave characterized by its correlation function which results from the shaping of the wave field by the apparatus. Instrument resolution effects - seen as due to the loss of correlation caused by the path differences in the different arms of the instrument are automatically included and analytic forms of the resolution function for different instruments are obtained. The intersection of the moving correlation volumes (those regions where the correlation functions are significant) associated with the different elements of the apparatus determines the maximum correlation lengths (times) that can be observed in a sample, and hence, the momentum (energy) resolution of the measurement. This geometrical picture of moving correlation volumes derived by our technique shows how the interaction of the scatterer with the wave field shaped by the apparatus proceeds in space and time. Matching of the correlation volumes so as to maximize the intersection region yields a transparent, graphical method of instrument design. PACS: 03.65.Nk, 3.80 +r, 03.75, 61.12.BComment: Latex document with 6 fig

    Algebraic Model for scattering in three-s-cluster systems. I. Theoretical Background

    Full text link
    A framework to calculate two-particle matrix elements for fully antisymmetrized three-cluster configurations is presented. The theory is developed for a scattering situation described in terms of the Algebraic Model. This means that the nuclear many-particle state and its asymptotic behaviour are expanded in terms of oscillator states of the intra-cluster coordinates. The Generating Function technique is used to optimize the calculation of matrix elements. In order to derive the dynamical equations, a multichannel version of the Algebraic Model is presented.Comment: 20 pages, 1 postscript figure, submitted to Phys. Rev.
    corecore